Linear Methods

for

Time-Series Analysis
Motivation

• linear methods
 - can yield complementary, useful information
 - may decide about prerequisites for non-linear methods
 - some are basic ingredients of non-linear methods

• non-linear methods may be overkill

• get acquainted with the pitfalls of data analysis
Statistical Data Analysis

<table>
<thead>
<tr>
<th>model-independent</th>
<th>model-dependent</th>
</tr>
</thead>
<tbody>
<tr>
<td>• moments of distributions</td>
<td>• model fitting</td>
</tr>
<tr>
<td>• (in-)equality of distributions</td>
<td>• parameter estimation</td>
</tr>
<tr>
<td>• correlation</td>
<td>• robust estimation</td>
</tr>
<tr>
<td>• ...</td>
<td>• ...</td>
</tr>
</tbody>
</table>

Descriptive statistics
Distribution of Values

Given: time series \(v: v_1, v_2, \ldots, v_N \) of some system observable \(x \)

Assumption: each value of the time series is independently sampled from some distribution

Assumption implies:
- no memory
- no dynamics
- time is not important
- stationarity (definition: later)
Distribution of Values

Examples

from: G. Ansmann
Distribution of Values Examples

\[\sin(t) \]

Probability density

\[\text{logistic map } (r = 4.0) \]

Probability density

\[\text{Lorenz oscillator} \]

Probability density

\[2 \sin(t) + \left(\sin(\sqrt{3}t) + \frac{1}{2} \right)^2 \]

Probability density

from: G. Ansmann
Statistical Moments of a Distribution

first moment: \textit{mean}

\[\bar{u} := \frac{1}{N} \sum_{i=1}^{N} u_i \]

\textit{mean vs. expected value:}

- mean \(\bar{u} \) is a property of a dataset
- expected value \(\langle u \rangle \) is a property of a population
- if a dataset is sampled from some population, \(\bar{u} \) is the best estimator for \(\langle u \rangle \) (of that population)

(law of large numbers)
Statistical Moments of a Distribution

second moment: \textit{variance}

\[
\sigma_v^2 := \frac{1}{N-1} \sum_{i=1}^{N} (v_i - \bar{v})^2
\]

width of the distribution, \textit{variability of the time series}

\(\sigma\): standard deviation

normalization factor:

- \(N-1\): estimating variance from a dataset
- \(N\) : variance of a population
Statistical Moments of a Distribution

third moment: **skewness**

$$s_v := \frac{1}{N} \sum_{i=1}^{N} \left(\frac{v_i - \bar{v}}{\sigma_v} \right)^3$$

$s < 0$

$s = 0$

$s > 0$

$s >> 0$

$s = 0$ for any symmetric distribution

from: G. Ansmann
Statistical Moments of a Distribution

fourth moment: \textit{kurtosis}

\[k_v := \frac{1}{N} \sum_{i=1}^{N} \left(\frac{v_i - \bar{v}}{\sigma_v} \right)^4 - 3 \]

the normal distribution has \(k = 0 \)

from: G. Ansmann
Statistical Moments of a Distribution

interpreting skewness and kurtosis

- typical noise is a superposition of many small effects
 \[\rightarrow\] typical noise is approximately normally distributed (central limit theorem)

- normal distribution is symmetric and mesokurtic

- significantly non-zero skewness and kurtosis hint at
 - non-linearity of measurement
 - dynamics
 - non-linear dynamics
 - extremes
 - …
Statistical Tests

- **assumption / prerequisite:**
 data independently sampled from some population

- **null hypothesis:**
 population not skewed

- **p-value / error probability / significance:**
 probability to find observed skewness in a population complying with the null hypothesis
 ∼ probability that null hypothesis is true

typical procedure:
1. choose significance threshold α, e.g., $\alpha = 0.05$
2. if $p < \alpha$, reject null hypothesis, e.g., consider data skewed
Statistical Tests

Example: skewness

Beware the prerequisites!

significance values are meaningless if assumptions are not fulfilled

results for skewness test for \(\{\sin(t) | t \in T\} \)

<table>
<thead>
<tr>
<th>(T)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.00, 0.01, ..., 9.00)</td>
<td>4 \cdot 10^{-9}</td>
</tr>
<tr>
<td>(0.00, 0.01, ..., 40.00)</td>
<td>0.02</td>
</tr>
<tr>
<td>(0.00, 0.01, ..., 41.00)</td>
<td>0.002</td>
</tr>
<tr>
<td>(0.0, 0.1, ..., 9.0)</td>
<td>0.05</td>
</tr>
<tr>
<td>(0, 1, ..., 100)</td>
<td>0.95</td>
</tr>
</tbody>
</table>

problem: data not independent!
Statistical Tests

Comparing means

Given: time series \(v: v_1, v_2, \ldots, v_{N_v} \) and \(w: w_1, w_2, \ldots, w_{N_w} \)
and respective means

\[
t = \frac{\bar{v} - \bar{w}}{\sigma_{vw}}
\]

where

\[
\sigma_{vw} = \sqrt{\frac{\sum_{i=1}^{N_v} (v_i - \bar{v})^2 + \sum_{i=1}^{N_w} (w_i - \bar{w})^2}{N_v + N_w + 2} \left(\frac{1}{N_v} + \frac{1}{N_w} \right)}
\]

\(p \)-value: tables or incomplete beta-function
Comparing variances

Given: time series $\mathbf{v}: v_1, v_2, \ldots, v_{N_v}$ and $\mathbf{w}: w_1, w_2, \ldots, w_{N_w}$

and respective variances

$$F = \frac{\sigma_v^2}{\sigma_w^2}$$

p-value: tables or incomplete beta-function
Statistical Tests

Kolmogorov-Smirnov (KS) test

based on cumulative distribution functions:

\[\text{CDF}(x) := \int_{-\infty}^{x} \text{PDF} (\tilde{x}) \, d\tilde{x} \]

significance obtained from maximal distance between CDFs

\[D := \max_x |\text{CDF}_1(x) - \text{CDF}_2(x)| \]

\(p \)-value: tables
Statistical Tests

Beware the prerequisites (once more)!
significance values are meaningless if assumptions are not fulfilled

results for comparing $\{\sin(t) \mid t \in T_1\}$ with $\{\sin(t) \mid t \in T_2\}$

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.00, 0.01, ..., 9.00)</td>
<td>(3.00, 3.01, ..., 12.00)</td>
<td>$6 \cdot 10^{-33}$</td>
</tr>
<tr>
<td>(0.00, 0.01, ..., 40.00)</td>
<td>(3.00, 3.01, ..., 43.00)</td>
<td>$2 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>(0.0, 0.1, ..., 9.0)</td>
<td>(3.0, 3.1, ..., 12.0)</td>
<td>0.001</td>
</tr>
<tr>
<td>(0, 1, ..., 100)</td>
<td>(3, 4, ..., 103)</td>
<td>0.99</td>
</tr>
</tbody>
</table>

problem: data not independent!
Statistical Tests

Comparing Distributions

Pearson’s correlation coefficient

Given: time series \(v_1, v_2, \ldots, v_N \) and \(w_1, w_2, \ldots, w_N \)

\[
\text{covariance} \quad \text{COV}_{vw} := \frac{1}{N-1} \sum_{i=1}^{N} (v_i - \bar{v}) + (w_i - \bar{w})
\]

Pearson’s \(r \)

\[
\rho_{vw} := \frac{\text{COV}_{vw}}{\sigma_v \sigma_w}
\]

\(r = 1 \): perfect correlation
\(r = 0 \): no correlation
\(r = -1 \): perfect anti-correlation
Statistical Tests

Pearson’s correlation coefficient

Comparing Distributions

from: G. Ansmann
Statistical Tests

Cross-Correlation

extension of Pearson’s correlation coefficient

Motivation:
- possible offset in time-dependent data
- sensors may capture dynamics with delay between them

Given: time series \mathbf{v}: v_1, v_2, ..., v_N and
shifted time series \mathbf{w}^τ: $w_{1+\tau}$, $w_{2+\tau}$, ..., w_N

Cross-correlation (with appropriately truncated time series):

$$C_{vw^\tau} = r_{vw^\tau}$$

symmetry: $C_{vw^\tau} = C_{wv^{−\tau}}$
Intermezzo: application of cross-correlation

task: find delay and synchrony between two time series

1. find delay that maximizes cross-correlation:
 \[
 \hat{\tau} = \arg\max_{\tau} C_{vw\tau}
 \]

2. use maximized cross-correlation as measure for synchrony

restrictions:
- assumes comparable dynamics
- assumes “simple” form of synchronization (details later)
Auto-correlation (with appropriately truncated time series):

\[R_{v\tau} := C_{vv\tau} = r_{vv\tau} \]

properties:

\[R_{v\tau} = R_{v-\tau} \]
\[R_{v\tau=0} = 1 \]

positive autocorrelation implies some repeating structure in the data
Statistical Tests

Auto-Correlation: Examples

from: G. Ansmann
It is sometimes more appropriate to consider how values rank instead of considering the actual values:

- **pros**: robust against outliers, often fewer constraints on data
- **cons**: information is discarded

<table>
<thead>
<tr>
<th>amplitude-based method</th>
<th>rank-based analogous method</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>median</td>
</tr>
<tr>
<td>Pearson’s r</td>
<td>Kendall’s tau, Spearman’s rho</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov test</td>
<td>Mann-Whitney test</td>
</tr>
</tbody>
</table>
Stationarity

- Stationarity is a system property!

- definition for time series analysis:

 “a (stochastic) process is called stationary if the distribution of its states over an ensemble of realizations of that process does not depend on time”

- this implies:

 constancy of all statistical moments (mean, variance, …) and all joint statistical moments (covariance, …)

- examples for non-stationary processes:
 - dynamics with changing parameters
 - driven dynamics
 - transient dynamics
Stationary or not?
Stationarity

prerequisite of most analysis techniques

• ensures reproducibility of experiments

• required for ergodicity
 (time average ↔ phase space average)

• depends on the time scale:

 on short time scales, an non-stationary process can be approximated as stationary

 on long time scales, instationarities may be regarded as parts of the dynamics or a driver
Stationarity

strong stationarity

“a (stochastic) process is called strongly stationary if the distribution of its states over an ensemble of realizations of that process does not depend on time”

weak stationarity

“a (stochastic) process is called weakly stationary if its mean, variance, and covariances do not depend on time”
Frequency Spectrum

Identifying hidden periodicities

Assumption:

The time series can be decomposed into periodic components

This implies

• periodicity, quasiperiodicity
• no chaos
• memory
Frequency Spectrum

Continuous Fourier transform:

\[\hat{v}(\omega) := \int_{-\infty}^{\infty} v(t) \exp(-i\omega t) \, dt; \quad \omega = 2\pi f \]

Discrete Fourier transform:

\[\hat{v}_k := \sum_{t=0}^{N} v_t \exp \left(-\frac{ikt}{N} \right) \]

Numerical realization:
- Fast Fourier Transform (FFT)
- beware how the output is aligned
Properties of the Fourier transform

Convolution theorem
\[\hat{v} \ast \hat{w} := \hat{v} \cdot \hat{w} \]

Correlation theorem
\[\mathcal{C}_{vw} := \hat{v}^\ast \cdot \hat{w} \]

Wiener-Khinchin theorem
\[\hat{R}_v = \hat{C}_{vv} = \hat{v}^\ast \cdot \hat{v} = |v|^2 \]

Plancharel theorem
\[\sum_{t=1}^N v_t^* \cdot w_t \propto \sum_{k=1}^N \hat{v}_k^* \cdot \hat{w}_k \]

Parseval’s theorem
\[\sum_{t=1}^N |v_t|^2 \propto \sum_{k=1}^N |\hat{v}_k|^2 \]

… and respective analogues for the inverse Fourier transform
Fourier transform Examples

From: G. Ansmann
problem:
- integration limits (-∞ to + ∞) ignored
- effectively: convolution of an infinitely long periodic signal with a rectangular window of finite (N) size → spectral leakage
Fourier transform

Spectral Leakage and Windowing

from: G. Ansmann
Fourier transform Spectral Leakage and Windowing

from: G. Ansmann
Fundamentals of Analyzing Biomedical Signals

Fourier transform Spectral Leakage and Windowing

from: G. Ansmann
Fourier transform

Spectral Leakage and Windowing

from: G. Ansmann
The standard deviation of each Fourier coefficient is as large as its actual value!

Minimization of uncertainty (ergodicity assumed)

→ averaging over moving windows in the time domain

→ moving average in the frequency domain
Linear Stochastic Processes

processes whose realizations depend on chance

- demonstrate limits of linear methods
- contain most real linear processes as a special case
- null model / null hypothesis
- used for data-driven modelling and forecasting
Linear Stochastic Processes

Each sample/value is independently drawn from the same distribution:

\[v_i = \epsilon_i; \quad i = 1, \ldots, N \]

- all frequencies are equally present (analogy: white light)
- autocorrelation is zero, except for a delay of 1
- most often: Gaussian white noise
- basis for the following models.
Linear Stochastic Processes

White Noise

v_i

$R_{v_0 \tau}$

PDF (a.u.)

spectral density (a.u.)

from: G. Ansmann
Linear Stochastic Processes

Autoregressive process of order $k=1$ (AR(1))

$$v_i = \alpha v_{i-1} + \epsilon_i; \quad i = 1, \ldots, N$$

Idea: Random process with some memory

for $\alpha > 0$, autocorrelation decays exponentially
for $\alpha < 0$, exponentially damped oscillation
Fundamentals of Analyzing Biomedical Signals

Linear Methods

Linear Stochastic Processes

AR(\(k\))-processes

\(k = 1\)
\(\alpha = 0.8\)

from: G. Ansmann
Linear Stochastic Processes

AR(k)-processes

$k = 1$

$\alpha = -0.9$

from: G. Ansmann
Fundamentals of Analyzing Biomedical Signals

Linear Stochastic Processes

Autoregressive process of order k (AR(k))

$$
\nu_i = \sum_{j=1}^{k} \alpha_j \nu_{i-j} + \epsilon_i; \quad i = 1, \ldots, N
$$

Idea: Random process with some memory

Autocorrelation is superposition of exponential decays and exponentially damped oscillations
Linear Stochastic Processes

ARMA(k,l)-processes

Autoregressive moving-average process of orders k, l (AR(k,l))

$$v_i = \sum_{j=1}^{k} \alpha_j v_{i-j} + \sum_{m=1}^{l} \beta_m \epsilon_{i-m}$$

Idea: Random process with some memory and smoothed noise
Linear Stochastic Processes

ARMA-processes

$k=l=4$

from: G. Ansmann
Further Stochastic Processes

- continuous-time, e.g., stochastic differential equations

- nonlinear stochastic processes
Applying linear methods sine wave

from: G. Ansmann
Applying linear methods

quasiperiodic

from: G. Ansmann
Applying linear methods

Lorenz oscillator

from: G. Ansmann
Applying linear methods logistic map

from: G. Ansmann
Applying linear methods

Gaussian white noise

\[v_i \]

\[R_{\nu \nu}^\tau \]

PDF (a.u.)

Spectral density (a.u.)

from: G. Ansmann
Applying linear methods

Capabilities:
linear methods can:
- detect periodic processes
 (non-decaying autocorrelation, discrete Fourier spectrum)
- hint at non-stochastic dynamics
 (not normally distributed)
- yield data-based, linear models that may not capture
 essential dynamical properties

Restrictions:
linear methods cannot:
- robustly distinguish noise from chaos
- yield nonlinear or chaotic models
Applying linear methods

Zaslavskii map

from: G. Ansmann
Applying linear methods

a discrete-time dynamical system that maps a point \((x_n, y_n)\) in the plane to a new point \((x_{n+1}, y_{n+1})\):

\[
x_{n+1} = (x_n + \nu (1 + \mu y_n) + \epsilon \nu \mu \cos (2\pi x_n)) \mod 1
\]

\[
y_{n+1} = (y_n + \epsilon \cos(2\pi x_n)) \exp(-\Gamma)
\]

where

\[
\Gamma = 3; \mu = \frac{1 - \exp(-\Gamma)}{\Gamma}; \nu = \frac{400}{3}; \epsilon = 0.3
\]

Applying linear methods

Hénon map

a discrete-time dynamical system that maps a point \((x_n, y_n)\) in the plane to a new point \((x_{n+1}, y_{n+1})\):

\[
\begin{align*}
x_{n+1} &= 1 - ax_n^2 + y_n \\ y_{n+1} &= bx_n
\end{align*}
\]

where

\[a = 1.4; b = 0.3\]

two-dimensional extension of logistic map

Applying linear methods

Stochasticity vs. Deterministic Chaos

- simple chaotic maps may be indistinguishable from stochastic processes with linear methods

- any pseudo-random-number generator is nothing but a very complex chaotic map

- but: nature may be more benign

Any sufficiently complex determinism is indistinguishable from stochasticity