Phase Space

Reconstruction
Brief Recap: Need for Nonlinear Methods

Lorenz oscillator

\[
\begin{align*}
\dot{x} &= 10(y - x) \\
\dot{y} &= x(28 - z) - y \\
\dot{z} &= xy - \frac{8}{3}z
\end{align*}
\]

AR(1) process measured with nonlinearity

\[
\begin{align*}
y_t &= 0.8y_{t-1} + \epsilon_t \\
x_t &= (1 + y_t)^2
\end{align*}
\]

from: G. Ansmann
Brief Recap: Need for Nonlinear Methods

Lorenz oscillator

\[
\begin{align*}
\dot{x} &= 10(y - x) \\
\dot{y} &= x(28 - z) - y \\
\dot{z} &= xy - \frac{8}{3}z
\end{align*}
\]

skewness ≈ 0.004; kurtosis ≈ -0.71

AR(1) process measured with nonlinearity

\[
\begin{align*}
y_t &= 0.8y_{t-1} + \epsilon_t \\
x_t &= (1 + y_t)^2
\end{align*}
\]

skewness ≈ 2.6; kurtosis ≈ 9.7

indication for nonlinearity?

from: G. Ansmann
Brief Recap: Need for Nonlinear Methods

Lorenz oscillator

\[
\begin{align*}
\dot{x} &= 10(y - x) \\
\dot{y} &= x(28 - z) - y \\
\dot{z} &= xy - \frac{8}{3}z
\end{align*}
\]

AR(1) process measured with nonlinearity

\[
\begin{align*}
y_t &= 0.8y_{t-1} + \epsilon_t \\
x_t &= (1 + y_t)^2
\end{align*}
\]

from: G. Ansmann
Brief Recap: Need for Nonlinear Methods

Lorenz oscillator

\[
\begin{align*}
\dot{x} &= 10(y - x) \\
\dot{y} &= x(28 - z) - y \\
\dot{z} &= xy - \frac{8}{3}z
\end{align*}
\]

AR(1) process measured with nonlinearity

\[
\begin{align*}
y_t &= 0.8y_{t-1} + \epsilon_t \\
x_t &= (1 + y_t)^2
\end{align*}
\]

from: G. Ansmann
Brief Recap: Need for Nonlinear Methods

When faced with time series from nonlinear systems, linear methods
- fail to detect the dynamics / structure in the data
- do not tell much about the dynamics
- cannot distinguish chaos from noise

→ Structure can be seen in attractors.
Brief Recap: Attractor

states of the dynamics for $t \to \infty$

type of dynamics can be deduced from topology of attractor:

- point \to fixed-point dynamics
- limit cycle \to periodic dynamics
- torus \to quasiperiodic dynamics
- strange attractor \to chaos

attractor reflects further central properties of dynamics.
Strange Attractors

Fundamentals of Analyzing Biomedical Signals

Phase Space
Need for Phase-Space Reconstruction

Directly observing the phase space / attractor requires access to all the system’s dynamical variables

But:
- often, only one dynamical variable accessible (or a time series thereof)
- dimension of phase space is often unknown

Can we obtain from a single time series a set that preserves important properties of the attractor?
Phase-Space Reconstruction

- **Actual attractor**
- **Perfect reconstruction**
- **Perfect reconstruction**
- **Preserves structure, practically bad**

- **Preserves structure, practically bad**
- **2D: structure not preserved**
- **3D: structure may be preserved**
- **(Phase as real number) structure not preserved**
- **(Forth and back on the same line) structure not preserved**

from: G. Ansmann
Phase-Space Reconstruction

original attractor
→ a d-manifold $A \subset \mathbb{R}^d$

measurement and reconstruction
→ a map $\phi : A \rightarrow \mathbb{R}^m$

structure-preserving reconstruction
→ topology-preserving map → an embedding

embedding
a map $\phi : A \rightarrow \mathbb{R}^m$ is called an embedding, if:
- $\nabla \phi$ has full rank
- ϕ is a diffeomorphism:
 - ϕ is differentiable
 - ϕ^{-1} exists and is differentiable
Phase-Space Reconstruction

Strong Whitney embedding theorem

For $m = 2d$, there exists a map $\phi : \mathcal{A} \rightarrow \mathbb{R}^m$ that is an embedding.

Problem: ϕ usually unknown

Weak Whitney embedding theorem

For $m > 2d+1$, almost every continuously differentiable (C^1) map $\phi : \mathcal{A} \rightarrow \mathbb{R}^m$ is an embedding.

Problems:

- Often, we do not have m independent observables
 (redundant observables are one of the reasons for “almost every”)
- We do not know d
Phase-Space Reconstruction

Idea:

- given time series $v: v_1, v_2, \ldots, v_N$ of some system observable x
- derivatives (first, second, third, ...) are not fully redundant.
- approximate derivatives with difference quotients:

 $\dot{v}_i = v_{i+1} - v_i$

 $\ddot{v}_i = v_{i+2} - 2v_{i+1} + v_i$

 etc.

$\sim v_i, v_{i+1}, \ldots$ are not fully redundant

\sim inverse Taylor expansion
Phase-Space Reconstruction

Takens’ Theorem:

- let $\mathcal{A} = \{x_1, x_2, \ldots, x_N\}$ with the index indicating time
- let $h : \mathcal{A} \to \mathbb{R}$ denote the measurement function that maps the system observable x to the time series v

If $m > 2d+1$,

$$\phi_{h,\tau} := (v_i, v_{i-\tau}, \ldots, v_{i-(m-1)\tau})$$

is an embedding for almost all dynamics, *embedding delays* τ and measurement functions h. m denotes the *embedding dimension*.
Phase-Space Reconstruction

Takens’ Theorem and applications:

- given time series v: $v_1, v_2, ..., v_N$ of some system observable x
- consider m-dimensional states (mapped from the attractor to the time series:

$$\begin{pmatrix} v_i, v_{i-\tau}, v_{i-2\tau}, \cdots, v_{i-(m-1)\tau} \end{pmatrix}^T$$

- for a proper embedding dimension m and embedding delay τ, these states make up a topologically equivalent reconstruction of the attractor.
Phase-Space Reconstruction

Example: Lorenz attractor

from: G. Ansmann
Phase-Space Reconstruction

Example: brain dynamics

EEG (awake state)
Phase-Space Reconstruction

Example: brain dynamics

EEG (epilepsy patient)
Phase-Space Reconstruction

Example: brain dynamics

EEG (epileptic seizure)
Dynamical Invariants

Important characteristics of the dynamics are invariant under the embedding transformation:

• Lyapunov exponents
• dimensions
• entropy
• ...

Phase-Space Reconstruction Delay-Embeddings
Phase-Space Reconstruction

Identifying embedding parameter

example: Lorenz attractor
Phase-Space Reconstruction

Identifying embedding parameter
delay

example: Lorenz attractor

from: G. Ansmann
Fundamentals of Analyzing Biomedical Signals

Phase Space

Phase-Space Reconstruction

Identifying embedding parameter
delay
example: Lorenz attractor

delay

from: G. Ansmann
Phase-Space Reconstruction

Identifying embedding parameter

delay

example: Lorenz attractor

from: G. Ansmann
Phase-Space Reconstruction

Identifying embedding parameter
delay
example: Lorenz attractor

t = 0.20

t = 0.30

from: G. Ansmann
Phase-Space Reconstruction

Identifying embedding parameter

requirement for an embedding:
\(\{v_i, v_{i-\tau}, v_{i-2\tau}, \ldots, v_{i-(m-1)\tau}\} \) not fully redundant

→ aforementioned theorems: almost every \(\tau \) yields an embedding:

requirements for a **good embedding**:

- minimum redundancy of \(\{v_i, v_{i-\tau}, v_{i-2\tau}, \ldots, v_{i-(m-1)\tau}\} \) (to unfold the attractor)
- reasonably small \(\tau \) (to avoid folding the attractor onto itself)

(compare to: linear independence vs. orthogonality)
Phase-Space Reconstruction

Identifying embedding parameter
using zeros of the autocorrelation

Idea:

if autocorrelation = 0 for some delay \(\Delta \) \(\Rightarrow \)
\(v_t \) and \(v_{t+\Delta} \) are \textit{linearly} independent on average

\(\rightarrow \) choose the first zero of the autocorrelation \(\Delta \) as embedding delay
Phase-Space Reconstruction

Identifying embedding parameter

using the first minimum of mutual information I

Idea: if common information for some delay Δ is minimum \Rightarrow v_t and $v_{t-\Delta}$ are independent on average (also includes nonlinear relationships)

$$I(M_1, M_2) = H(M_1) - H(M_1 | M_2) = H(M_1) + H(M_2) - H(M_1, M_2)$$

where M_1 and M_2 denote measurements at times t and $t-\Delta$, and

$H = - \sum_i p_i \log p_i$ is the Shannon entropy

\rightarrow choose the first minimum of the mutual information Δ as embedding delay

Identifying embedding parameter

first minimum of mutual information I

Phase-Space Reconstruction

Identifying embedding parameter
- zeros of the autocorrelation function
- minima of the mutual information
- many more

No method is perfect or commonly agreed upon.

Practically:
- try at least two methods
- judge by further analysis
- alternative for \(m \leq 3 \): visually inspect the attractor
- keep embedding window \((m - 1)\tau\) (time span in an embedded vector) constant
Fundamentals of Analyzing Biomedical Signals

Phase-Space Reconstruction

Identifying embedding parameter

dimension

embedding theorems define “sufficient” embedding dimension m

problem: dimension of system under study usually unknown

choosing m overly high may hamper further analyses
(impact of noise, finite number of data points, computational complexity)

→ Need other ways to determine a good m
Phase-Space Reconstruction

Identifying embedding parameter

Linear Dependence

idea:
- m is higher than necessary
 - attractor only covers a subspace of reconstruction space
 - (e.g., circle in $m = 3$)
- check whether embedded vectors have full rank.

difficulties:
- noise acts in all directions
- assumes linear dependence \rightarrow dependence may be nonlinear
Phase-Space Reconstruction

Identifying embedding parameter dimension

Asymptotic Invariants

idea:
- m too small \Rightarrow wrong dynamical invariants (in general)
- m sufficient \Rightarrow correct dynamical invariants

\rightarrow increase m until dynamical invariants converge

difficulties:
- criterion for convergence under real conditions (noise, finite number of data points, …)
- wrong (in general) is unpredictable
Phase-Space Reconstruction

Identifying embedding parameter

False Nearest Neighbors

idea:

- \(m \) too small \(\Rightarrow \) trajectories intersect
 \(\Rightarrow \) points close in reconstruction space that aren’t close in actual phase space (false nearest neighbors)

\(\rightarrow \) increase \(m \) until false nearest neighbors vanish.

Phase-Space Reconstruction

Identifying embedding parameter

False Nearest Neighbors

practically:
- choose threshold ε for nearest neighbors
- $NN(m)$: number of pairs of points in m-dimensional reconstruction space that are closer than ε
- $NN(m + 1) < NN(m)$

\Rightarrow at least $NN(m) - NN(m + 1)$ false nearest neighbors in the m-dimensional reconstruction.

difficulties:
number of true nearest neighbors large and fluctuating (noise).
Phase-Space Reconstruction

Summary

delay embedding allows to reconstruct attractor from single observable
- parameters m and τ have to be carefully chosen
- reconstructed phase space may be used for:
 - understanding
 - prediction
 - modelling
 - …

- characteristics preserved by reconstruction:
 dimensions, Lyapunov exponents, entropy, …
Phase-Space Reconstruction

Summary

delay embedding allows to reconstruct attractor from single observable

- parameters m and τ have to be carefully chosen
- reconstructed phase space may be used for:
 - understanding
 - prediction
 - modelling
 - …

- characteristics preserved by reconstruction:
 Lyapunov exponents, dimensions, entropy, …
Phase-Space Reconstruction

Extensions

• multivariate time series
• different embedding delays for each component
• state-dependent embedding delays