Contrast Agents in Magnetic Resonance Imaging

Christian Schilz

29/06/15
Table of content

- Motivation
- Basics, Origin of contrast
- Contrast Agents (T_1/T_2)
- Applications
- Active targeting
- Conclusion
Reasons for using contrast agents

- We need contrast to see structures
- Sometimes it's difficult to distinguish between different types of structures
What are contrast agents?

- Injected before MRI scan
 - Transportable
 - Region of interest
- Modify relaxation times
- Enhanced contrast
Basics

- 70% H_2O
- $B_0 (1.5 - 3) \text{T}$ aligns spins $\rightarrow M_z$
- Larmor frequency $\omega_0 = \gamma \cdot B_0$
- High frequency impulse B_{HF} @ (5-100)MHz
T_1 Relaxation Time

- Recovery time of M_z
- Energy loss to lattice
- Spin-lattice Relaxation
- $T_1 = (0.5-5)s$
\(T_2 \) Relaxation Time

- Loss of \(M_{xy} \) coherence
- Energy exchange between spins
- Spin-Spin Relaxation
- \(T_2 = (1-200) \) ms
What can we do with the relaxation times?

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>T_1 value in ms</th>
<th>T_2 value in ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood (deoxygenated)</td>
<td>1350</td>
<td>50</td>
</tr>
<tr>
<td>Whole blood (oxygenated)</td>
<td>1350</td>
<td>200</td>
</tr>
<tr>
<td>Gray matter of cerebrum</td>
<td>920</td>
<td>100</td>
</tr>
<tr>
<td>White matter of cerebrum</td>
<td>780</td>
<td>90</td>
</tr>
<tr>
<td>Liver</td>
<td>490</td>
<td>40</td>
</tr>
<tr>
<td>Kidneys</td>
<td>650</td>
<td>60-75</td>
</tr>
<tr>
<td>Muscles</td>
<td>860-900</td>
<td>50</td>
</tr>
</tbody>
</table>
\(T_1 \)-weighted

- Short TR
 - different amounts of recovery
- Short TE
 - minimizes effect of \(T_2 \)
- Short \(T_1 \)
 - bright signal
T_2-weighted

- **Long TR**
 - minimizes effect of T_1

- **Long TE**
 - different amounts of decay

- **Short T_2**
 - dark signal
Perfect contrast agents

goes where you want it
not toxic
Large change in relaxation time
Contrast agents

- **T₁ contrast agents**
 - Positive agents
 - Shorten T₁ time
 - Increase signal
 - T₁ weighted images
 - Paramagnetic
 - Gadolinium Gd³⁺

- **T₂ contrast agents**
 - Negative agents
 - Shorten T₂ time
 - Decrease signal
 - T₂ weighted images
 - Ferro- or superparamagnetic nanoparticles
 - Magnetite Fe₃O₄
T_1 Contrast Agents

- Way to influence the water molecules

- Fluctuating field at Larmor frequency
 - Relaxation occurs

- Energy exchange Proton ↔ Lattice

- Normally: Protons
T_1 Contrast Agents

- Better way: Electrons
 - 660 times more powerful
- Gadolinium: 7-unpaired electrons
- 1 Million water molecules per second
- Gadolinium is toxic
- Use Gd chelates
- Stable complex
- Eliminated via the kidneys
T₂ contrast agents

- Iron Oxides
 - Magnetite Fe₃O₄

- Produce dark spots

- Superparamagnetic nanoparticles
Why so big?

1.5nm

Ferromagnetic or superparamagnetic particle

5nm - μm
T_2 contrast agents

- Protons with ω_L
- Proton with $\omega_L + \Delta \omega$
- Proton with ω_L again but with phaseshift
- Out of phase

Strong magnetic field

Ferromagnetic or superparamagnetic particle

5nm - µm
Classification of nanoparticles

- Ultra-small superparamagnetic iron oxide nanoparticles USPIONs
- Superparamagnetic iron oxide nanoparticles SPIONs
- Micron-sized particles of iron oxide MPIO
Clearance

USPIOs

"long" circulation in the blood

(50-150)nm

SPIONs

smaller than 5nm

larger than 200nm
SPIONs

- ~200nm
- Uptake by phagocytic cells (Kupffer cells)
- Contrast between normal and abnormal tissue
USPIONs
How can we improve nanoparticles

- Before: biological distribution
 - Fate depends on: size, surface
 - Uptake by macrophages

- Now: “invade” the tumor cells
 - Need to optimize the nanoparticles
 - Long blood circulation

- “Stealthiness”
Coating

• Remember: superparamagnetic particles

• But Van der Waals forces

• e.g. Stabilize particle with Polymers
 – Reduce uptake by macrophages
 – Longer circulation

end-grafted

fully encapsulated
Multifunctionality

- Fluorophore
- Polymer Coating
- Therapeutic Agent
- MNP Core
- Permeation Enhancer
- Targeting Agent
Active Targeting

- Leaky blood vessels
- Targeting agents
 - open the door
- Releasing of therapeutic agent
- Destroy the cell
Conclusion

- Two types of relaxation time T_1/T_2
- Contrast agents increase contrast
- Agents decrease relaxation times
 - T_1: Gadolinium
 - T_2: Magnetite nanoparticles
- Size controls biodistribution
- Targeting contrast agents

- Physics will not change

- Future lies in the hands of chemists
Thank you!
References

● Papers

Joan Estelrich, Maria Jesus Sanches-Martin, Maria Antonia Busquets (2015): “Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents”, in International Journal of Nanomedicine, 10, 1727-1740.

● Videos

MRI Imaging and Contrast Agents: https://www.youtube.com/watch?v=w7OwvjPLeyY
Nanoscale MRI Contrast Agents: https://www.youtube.com/watch?v=vgK9RIJKOnE
MR Contrast Agents Relaxivity: https://www.youtube.com/watch?v=Osx8Ced9Eyw
References

- **Graphics**

 https://upload.wikimedia.org/wikipedia/commons/1/19/Magnetite-244496.jpg

 http://www.williamlaird.com/images/medical-liver.png

 https://www.cml-wissen.de/grafik_01_Symptome-Milz-Leber_klein.jpg

 http://byebyedoctor.com/lymph-node-locations/

 http://img.webmd.com/dtmcms/live/webmd/consumer_assets/site_images/media/medical/hw/n2073.jpg

 http://mri-q.com/feridex-and-iron-oxides.html

 http://chemedu.pu.edu.tw/genchem/delement/images/FG22_07.gif

 http://genius.com/3172848/Mister-molato-periodic-table/64-gadolinium-gd

 http://oxfordchemistrytutor.co.uk/wp-content/uploads/2015/01/chemistry-woman.jpg

References

- **Websites**

 http://www.spektrum.de/lexikon/physik/ferrimagnetische-ordnung/4937

 http://pubs.rsc.org/en/content/articlehtml/2014/cs/c4cs00201f

 http://www.cc.utah.edu/~av6a51/mri.htm#Agents

 http://cvandir.blogspot.de/2012/10/mr-c-static-contrast-enhanced-mra.html

 http://radiopaedia.org/articles/paramagnetic-contrast-agents

 http://www.cchem.berkeley.edu/knrrgrp/mri.html

 http://www.cmp.liv.ac.uk/shrike/mphys/chap2.html

 http://www.emg.tu-bs.de/forschung/material/magnetite_d.html

 http://www.revisemri.com/questions/misc/gd_t1_shortening

 http://www.ask.com/science/smallest-blood-vessel-body-46b97857ca2f9213

 http://www.rad.washington.edu/academics/academic-sections/diagphys/MRI-R2_Intro-100820c.pdf
Backup
Spin-Echo sequence (backup)
Why Magnetite? (backup)

Fe\textsubscript{3+}[Fe\textsubscript{3+}Fe\textsubscript{2+}]O\textsubscript{4}

in short Fe\textsubscript{3}O\textsubscript{4}

1/3 of the iron ions are Fe3+ in A sites
2/3 of the iron ions are Fe2+ and Fe3+ (50/50) in B sites

Fe3+ Tetrahedral

Fe3+ Octahedral

Fe2+ Octahedral

\[4\mu_B \]

28 per unit cell
Active Targeting (backup)

- Leaky vasculatures
- Targeting agents
 - open the door
- Receptor-mediated endocytosis
- Endosome breaks up
- Releasing of therapeutic agent