Estimating Lyapunov Exponents from Time Series

Gerrit Ansmann
Example: Lorenz system

Two identical Lorenz systems with initial conditions; one is slightly perturbed (10^{-14}) at $t = 30$:
The Largest Lyapunov Exponent

Consider evolution of two close trajectories x and y:

Then their distance grows or shrinks exponentially:

$$|x(t + \tau) - y(t + \tau)| = |x(t) - y(t)| e^{\lambda_1 \tau}$$

For:

- infinitesimally close trajectories ($|x(t) - y(t)| \to 0$)
- infinite time evolution ($\tau \to \infty$)

*Note: In this entire lecture, τ is *not* the embedding delay.*
The Largest Lyapunov Exponent – Definition

\[|x(t + \tau) - y(t + \tau)| = |x(t) - y(t)| \ e^{\lambda_1 \tau} \]

→ Solve for \(\lambda_1 \) and implement the limits:

First Lyapunov exponent

Let \(x \) and \(y \) be two trajectories of the dynamics.

\[
\lambda_1 := \lim_{\tau \to \infty} \lim_{|x(t) - y(t)| \to 0} \frac{1}{\tau} \ln \left(\frac{|x(t + \tau) - y(t + \tau)|}{|x(t) - y(t)|} \right)
\]

Also: largest Lyapunov exponent or just Lyapunov exponent.
Typical Evolution of a Trajectory Distance

Two identical Lorenz systems with initial conditions; one is slightly perturbed (10^{-14}) at $t = 30$:
Comparison with Evolution of Infinitesimal Distance

Two identical Lorenz systems with initial conditions; one is slightly perturbed \((10^{-14})\) at \(t = 30\):
Typical Evolution of a Trajectory Distance

Regimes of the average distance D:

1. Alignment to the direction of largest growth: $D(\tau) \propto \sum_{i=1}^{\infty} c_i(\tau) \lambda_i^\tau$
2. Asymptotically: $c_i(\tau) \rightarrow 0$ for $i > 1$
3. Exponential growth: $D(\tau) \propto \text{diam}(\mathcal{A})$
4. Constancy on the scale of the attractor: $D(\tau) \approx \text{diam}(\mathcal{A})$
Typical Evolution of a Trajectory Distance

Regimes of the average distance D:

1. alignment to direction of largest growth:

$$D(\tau) \propto \sum_{i=1}^{d} c_i(\tau) \exp(\lambda_i \tau)$$

Asymptotically: $\frac{c_i(\tau)}{c_1(\tau)} \to 0$ for $i > 1$
Typical Evolution of a Trajectory Distance

Regimes of the average distance D:

1. alignment to direction of largest growth:

$$D(\tau) \propto \sum_{i=1}^{d} c_i(\tau) \exp(\lambda_i \tau)$$

Asymptotically: $\frac{c_i(\tau)}{c_1(\tau)} \to 0$ for $i > 1$

2. exponential growth:

$$D(\tau) \propto \exp(\lambda_1 \tau)$$
Typical Evolution of a Trajectory Distance

Regimes of the average distance D:

1. alignment to direction of largest growth:

$$D(\tau) \propto \sum_{i=1}^{d} c_i(\tau) \exp(\lambda_i \tau)$$

Asymptotically: $\frac{c_i(\tau)}{c_1(\tau)} \to 0$ for $i > 1$

2. exponential growth:

$$D(\tau) \propto \exp(\lambda_1 \tau)$$

3. constancy on the scale of the attractor:

$$D(\tau) \approx \text{diam}(\mathcal{A})$$
Translation to Time Series

• continuous trajectories
 → discrete trajectories

• actual phase space
 → reconstruction

• evolution of arbitrary states
 → available trajectories

And of course: finite data, noise, ...
Wolf Algorithm
Acquisition of Instantaneous Lyapunov Exponents

1. Let $x(0)$ be the first reconstructed state.
2. Find a state $x(t_1)$ such that $|x(t_1) - x(0)| < \varepsilon$.

\[
\hat{\lambda}_1(0) = \frac{1}{\tau} \log \frac{x(\tau) - x(t_1 + \tau)}{x(t_1) - x(t_1 + \tau)} \\
\hat{\lambda}_1(\tau) = \frac{1}{\tau} \log \frac{x(2\tau) - x(t_2 + \tau)}{x(\tau) - x(t_2 + \tau)}
\]
Wolf Algorithm
Acquisition of Instantaneous Lyapunov Exponents

1. Let $x(0)$ be the first reconstructed state.
2. Find a state $x(t_1)$ such that $|x(t_1) - x(0)| < \varepsilon$.
Wolf Algorithm

Acquisition of Instantaneous Lyapunov Exponents

1. Let \(x(0) \) be the first reconstructed state.
2. Find a state \(x(t_1) \) such that \(|x(t_1) - x(0)| < \varepsilon \).
3. Approximate instantaneous largest Lyapunov exponent:
 \[
 \hat{\lambda}_1(0) = \frac{1}{\tau} \ln \left(\frac{x(\tau) - x(t_1 + \tau)}{x(0) - x(t_1)} \right).
 \]
1. Let $x(0)$ be the first reconstructed state.
2. Find a state $x(t_1)$ such that $|x(t_1) - x(0)| < \epsilon$.
3. Approximate instantaneous largest Lyapunov exponent:
 $$\hat{\lambda}_1(0) = \frac{1}{\tau} \ln \left(\frac{x(\tau) - x(t_1 + \tau)}{x(0) - x(t_1)} \right).$$
4. Find a state $x(t_2)$ such that $|x(t_2) - x(\tau)| < \epsilon$ and $x(t_2) - x(t + \tau)$ is nearly parallel to $x(t_1 + \tau) - x(t + \tau)$.
Wolf Algorithm
Acquisition of Instantaneous Lyapunov Exponents

1. Let $x(0)$ be the first reconstructed state.
2. Find a state $x(t_1)$ such that $|x(t_1) - x(0)| < \varepsilon$.
3. Approximate instantaneous largest Lyapunov exponent:
 \[
 \hat{\lambda}_1(0) = \frac{1}{\tau} \ln \left(\frac{x(\tau) - x(t_1 + \tau)}{x(0) - x(t_1)} \right).\]
4. Find a state $x(t_2)$ such that $|x(t_2) - x(\tau)| < \varepsilon$ and $x(t_2) - x(t + \tau)$ is nearly parallel to $x(t_1 + \tau) - x(t + \tau)$.
5. Approximate instantaneous largest Lyapunov exponent:
 \[
 \hat{\lambda}_1(\tau) = \frac{1}{\tau} \ln \left(\frac{x(2\tau) - x(t_2 + \tau)}{x(\tau) - x(t_2)} \right).\]
Wolf Algorithm – Averaging

After acquiring the local Lyapunov exponents, estimate:

\[\lambda_1 = \frac{1}{I - r} \sum_{i=r}^{I} \hat{\lambda}_1(i \tau) \]

The offset \(r \) ensures that the distances are aligned to the direction of largest growth.
Wolf Algorithm – Parameters

Initial distance ϵ:
- too small → impact of noise too high
- too large → small region of exponential growth

Rescaling time τ:
- too high → distance reaches size of attractor
- too small → small region of exponential growth
Wolf Algorithm – Problems

• Parameters have to be chosen a priori.

• Problems may be obfuscated:
 • no exponential growth due to noise
 • embedding dimension m too small

• Sensitivity to noise.

• Difficult to find neighbouring trajectory segment with required properties.

→ Different way to ensure alignment to direction of largest growth.
For a given reference state $x(t)$, find all states $x(t_1), \ldots, x(t_u)$ for which $|x(t) - x(t_j)| < \varepsilon$.

\[x(t) \]

\[\varepsilon \]
Rosenstein–Kantz Algorithm

1. For a given reference state $x(t)$, find all states $x(t_1), \ldots, x(t_u)$ for which $|x(t) - x(t_j)| < \varepsilon$.
Rosenstein–Kantz Algorithm

1. For a given reference state \(x(t) \), find all states \(x(t_1), \ldots, x(t_u) \) for which \(|x(t) - x(t_j)| < \varepsilon \).

2. For a given \(\tau \), define the average distance of the respective trajectory segments from the initial one

\[
s(t, \tau) := \frac{1}{u} \sum_{j=1}^{u} |x(t + \tau) - x(t_j + \tau)|
\]
Rosenstein–Kantz Algorithm

1. For a given reference state \(x(t) \), find all states \(x(t_1), \ldots, x(t_u) \) for which \(|x(t) - x(t_j)| < \varepsilon\).

2. For a given \(\tau \), define the average distance of the respective trajectory segments from the initial one:

\[
s(t, \tau) := \frac{1}{u} \sum_{j=1}^{u} |x(t + \tau) - x(t_j + \tau)|
\]

3. Average over all states as reference states:

\[
S(\tau) := \frac{1}{N} \sum_{t=1}^{N} s(t, \tau)
\]
Rosenstein–Kantz Algorithm

1. For a given *reference* state \(x(t) \), find all states \(x(t_1), \ldots, x(t_u) \) for which \(|x(t) - x(t_j)| < \varepsilon \).

2. For a given \(\tau \), define the average distance of the respective trajectory segments from the initial one

\[
S(t, \tau) := \frac{1}{u} \sum_{j=1}^{u} |x(t + \tau) - x(t_j + \tau)|
\]

3. Average over all states as reference states:

\[
S(\tau) := \frac{1}{N} \sum_{t=1}^{N} S(t, \tau)
\]

4. Obtain \(\lambda_1 \) from region of exponential growth of \(S(\tau) \).
Rosenstein–Kantz Algorithm – Example

(Different lines correspond to different ϵ and m.)

Rosenstein–Kantz Algorithm – Mind How You Average

1. Average over the neighbourhood of a reference state → \(s(t, \tau) \).

2. Average \(s(t, \tau) \) over all reference states → \(S(\tau) \).

3. Obtain \(\lambda_1 \) from slope of \(S(\tau) \).

Density of states in a region of the attractor affects:
• reference states
• states in neighbourhood of given reference state

Separating the averaging in steps 1 and 2 (instead of averaging of all pairs closer than \(\varepsilon \)) ensures that density is accounted for only once (and not twice).
Rosenstein–Kantz Algorithm – Advantages and Problems

- Region of exponential growth can be determined a posteriori. Be careful of wishful thinking though.
- Absence of exponential growth usually detectable (but only usually).
- Region of strong noise influence can be detected and excluded.
- Can only determine the largest Lyapunov exponent.
extensions and alternatives

• tangent-space methods
 → require estimate of Jacobian

• further Lyapunov exponents
 → requires a lot of data
Lyapunov Spectrum and Types of Dynamics

For bounded, continuous-time dynamical systems:

<table>
<thead>
<tr>
<th>signs of Lyapunov exponents</th>
<th>Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>-, --, ---, ...</td>
<td>fixed point</td>
</tr>
<tr>
<td>+, ++, ++++, ..., +0, ++0, ...</td>
<td>not possible (unbounded)</td>
</tr>
<tr>
<td>0, 00, 000, ...</td>
<td>no dynamics ($f = 0$)</td>
</tr>
<tr>
<td>0−, 0−−, 0−---, ...</td>
<td>periodic / limit cycle</td>
</tr>
<tr>
<td>00−, 00--0, 00---, ...</td>
<td>quasiperiodic (torus)</td>
</tr>
<tr>
<td>000−, 0000−, ..., 000--0, ...</td>
<td>quasiperiodic (hypertorus)</td>
</tr>
<tr>
<td>0000−, 00000−, ..., 0000--0, ...</td>
<td></td>
</tr>
<tr>
<td>+0−, +0--0, +0---0, ...</td>
<td>chaos</td>
</tr>
<tr>
<td>++0−, +++0−, ..., ++0--0, ...</td>
<td>hyperchaos</td>
</tr>
<tr>
<td>∞, ...</td>
<td>noise</td>
</tr>
</tbody>
</table>
Interpretation

• Stability and type of the dynamics:
 \(\lambda_1 > 0 \) chaos, instable dynamics
 \(\lambda_1 = 0 \) regular dynamics
 \(\lambda_1 < 0 \) fixed-point dynamics

• Quantification of loss of information.

• Prediction horizon:

\[\tau_p \approx \frac{-\ln(\rho)}{\sum_{i,\lambda_i > 0} \lambda_i} \]

• \(\rho \): Accuracy of measurement (initial state).
• \(\sum_{i,\lambda_i > 0} \): Sum of positive Lyapunov exponents.